
DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

UNIT-1

SYLLABUS:

Introduction to Databases: Characteristics of the Database Approach, Advantages of using

the DBMS Approach, A Brief History of Database Applications.

Overview of Database Languages and Architectures: Data Models, Schemas and

Instances, Three-Schema Architecture and Data Independence, Database Languages and

Interfaces, Database System environment, Centralized and Client-Server Architecture for

DBMSs.

INTRODUCTION TO DATABASES:

Databases and database technology have a major impact on the growing use of computers. It

is fair to say that databases play a critical role in almost all areas where computers are used, including

business, electronic commerce, engineering, medicine, genetics, law, education, and library science.

DATABASE:

A database is a collection of related data. By data, we mean known facts that can be recorded and that

have implicit meaning. For example, consider the names, telephone numbers, and addresses of the

people you know.

A database has the following implicit properties:

It represents some aspect of the real world, sometimes called the mini world or the universe of

discourse (UoD). Changes to the mini world are reflected in the database.

It is a logically coherent collection of data, to which some meaning can be attached.
It is designed, built, and populated with data for a specific purpose. It has an intended group

of users and some preconceived applications in which these users are interested.

To summarize: a database has some source (i.e., the mini world) from which data are derived, some

degree of interaction with events in the represented mini world and an audience that is interested in

using it.

Size/Complexity: A database can be of any size and complexity. For example, the list of names and

addresses referred to earlier may consist of only a few hundred records, each with a simple structure.

An example of a large commercial database is Amazon.com. It contains data for over 20 million

books, CDs, videos, DVDs, games, electronics, apparel, and other items.

Computerized vs. manual: A database may be generated and maintained manually or it may be

computerized. For example, simple database like telephone directory may be created and maintained

manually. Huge and complex database may be created and maintained either by a group of application

programs written specifically for that task or by a database management system.

Database Management System (DBMS)

A database management system (DBMS) is a collection of programs enabling users to create

and maintain a database. More specifically, the DBMS is a general-purpose software system that

facilitates the processes of defining, constructing, manipulating, and sharing databases among various

users and applications.

Defining a database involves specifying the data types, structures, and constraints of the data

to be stored in the database. The database definition or descriptive information is stored by the

DBMS in the form of a database catalog or dictionary; it is called meta-data.

V.RASHMI (Assistant Professor) PVPSIT IT 1

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

Constructing the database is the process of storing the data on some storage medium that is

controlled by the DBMS.

Manipulating a database includes functions such as querying the database to retrieve specific

data, updating the database to reflect changes in the mini world, and generating reports from

the data.

Sharing a database allows multiple users and programs to access the database simultaneously.

Other important functions provided by the DBMS include protecting the database and maintaining it

over a long period of time.

✓ Protection includes system protection against hardware or software malfunction (or crashes)

and security protection against unauthorized or malicious access.

✓ A typical large database may have a life cycle of many years, so the DBMS must be able to

maintain the database system by allowing the system to evolve as requirements change over

time.

A database together with the DBMS software is referred to as a database system.

Fig: A simplified database system environment

Example:

Consider a UNIVERSITY database for maintaining information concerning students, courses, and

grades in a university environment. The database is organized as five files, each of which stores data

records of the same type.

1. STUDENT file: stores data on each student.
2. COURSE file: stores data on each course.
3. SECTION file: stores data on each section of a course.
4. GRADE_REPORT file: stores the grades that students receive in the various sections they

have completed.
5. PREREQUISITE file: stores the prerequisites of each course.

V.RASHMI (Assistant Professor) PVPSIT IT 2

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

Fig: A database that stores student and course information

Defining a UNIVERSITY database

o Specify the structure of the records of each file - data elements to be stored in each record.
For example: each STUDENT record includes data to represent the Name,

Student_number, Class Major. Similarly each COURSE record includes data to represent the

Course_name, Course_number, Credit_hours, and Department.

V.RASHMI (Assistant Professor) PVPSIT IT 3

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

o Specify a data type for each data element within a record. For example: is a

string of alphabetic characters Student_number is an integer.

Constructing the UNIVERSITY database

o To construct the UNIVERSITY database, we store data to represent each student, course,

section, grade report, and prerequisite as a record in the appropriate file.
o Records in the various files may be related. For example, the record for Smith in the

STUDENT file is related to two records in the GRADE_REPORT file that specify Smith’s

grades in two sections. Similarly, each record in the PREREQUISITE file relates two course

records: one representing the course and the other representing the prerequisite.

Manipulating a UNIVERSITY database

Database manipulation involves querying and updating.

Examples of queries are as follows:

✓ Retrieve the transcript a list of all courses and grades
✓ List the names of students who took the section of ‘Database’ course offered in fall 2008 and

their grades in that section.

✓ List the prerequisites of Database course.

Examples of updates include the following:

✓ Change the class of ‘Smith’ to sophomore.

✓ Create a new section for the ‘Database’ course for this semester.

✓ Enter a grade of ‘A’ for ‘Smith’ in the ‘Database’ section of last semester.

These informal queries and updates must be specified precisely in the query language of the

DBMS before they can be processed.

As with software in general, design of a new application for an existing database or design of

a brand new database starts off with a phase called requirements specification and analysis. These

requirements are documented in detail and transformed into a conceptual design that can be

represented and manipulated using some computerized tools so that it can be easily maintained,

modified, and transformed into a database implementation.

The design is then translated to a logical design that can be expressed in a data model

implemented in a commercial DBMS. The final stage is physical design, during which further

specifications are provided for storing and accessing the database. The database design is

implemented, populated with actual data, and continuously maintained to reflect the state of the mini

world.

Characteristics of Database Approach:
Database approach vs. File Processing approach

Consider an organization that is organized as a collection of departments/offices. Each

department has certain data processing "needs", many of which are unique to it.

In the file processing approach, each department would control a collection of relevant data

files and software applications to manipulate that data. For example, one user, the grade reporting

office, may keep files on students and grades. Programs to print a student’s transcript audio enter new

grades are implemented as a part of the application. A second user, the accounting office, may keep

track of student files and their payments. Although users are interested in data about students, each

V.RASHMI (Assistant Professor) PVPSIT IT 4

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

students maintain separate files and programs to manipulate these files because each requires some

data from the other user’s files. This redundancy in defining and storing data results in wasted storage

space and in redundant efforts to maintain common up-to-date data.

In the database approach, a single repository maintains data that is defined once and then

accessed by various users. In file systems, each application is free to name data elements

independently. In contrast, in a database, the names or labels of data are defined once, and used

repeatedly by queries, transactions, and applications.

The main characteristics of the database approach versus the file-processing approach are the

following:

1) Self-describing nature of a database system

2) Insulation between programs and data, and data abstraction
3) Support of multiple views of the data

4) Sharing of data and multiuser transaction processing

1) Self-describing nature of a database system:

A fundamental characteristic of the database approach is that the database system contains not

only the database itself but also a complete definition or description of the database structure and

constraints. This meta-data (i.e., data about data) is stored in the so-called system catalog, which

contains a description of the structure of each file, the type and storage format of each field, and the

various constraints on the data (i.e., conditions that the data must satisfy).

The system catalog is used not only by users but also by the DBMS software, which certainly

needs to "know" how the data is structured/organized in order to interpret it in a manner consistent

with that structure.

Fig: An example of a database catalog for the database

2) Insulation between Programs and Data, and Data Abstraction:

Program-Data Independence: In traditional file processing, the structure of the data files accessed

by an application is "hard-coded" in its source code. If, for some reason, we decide to change the

structure of the data, every application in which a description of that file's structure is hard-coded must

be changed!

V.RASHMI (Assistant Professor) PVPSIT IT 5

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

In contrast, DBMS access programs, in most cases, do not require such changes, because the structure

of the data is described separately from the programs that access it and those programs consult the

catalog in order to ascertain the structure of the data so that they interpret that data properly.

In other words, the DBMS provides a conceptual or logical view of the data to application programs,

so that the underlying implementation may be changed without the programs being modified. (This is

referred to as program-data independence.

Program-operation independence: In object-oriented and object-relational systems, users can define

operations on data as part of the database definitions. An operation (also called a function or method)

is specified in two parts. The interface (or signature) of an operation includes the operation name and

the data types of its arguments (or parameters). The implementation (or method) of the operation is

specified separately and can be changed without affecting the interface. User application programs can

operate on the data by invoking these operations through their names and arguments, regardless of

how the operations are implemented. This may be termed program-operation independence.

Data abstraction: The characteristic that allows program-data independence and program-operation

independence is called data abstraction. A DBMS provides users with a conceptual representation of

data that does not include many of the details of how the data is stored or how the operations are

implemented. Informally, a data model is a type of data abstraction that is used to provide this

conceptual representation. The data model uses logical concepts, such as objects, their properties, and

their inter relationships, that may be easier for most users to understand than computer storage

concepts. Hence, the data model hides storage and implementation details that are not of interest to

most database users.

3) Support of Multiple Views of the Data

A database typically has many users, each of whom may require a different perspective or

view of the database. A view may be a subset of the database or it may contain virtual data that is

derived from the database files but is not explicitly stored. A multiuser DBMS whose users have a

variety of distinct applications must provide facilities for defining multiple views. For example, one

user of the database of Figure 1.2 may be interested only in accessing and printing the transcript of

each student; the view for this user is shown in Figure.

Fig. View derived from the University

database 4) Sharing of Data and Multiuser Transaction Processing:

A multiuser DBMS, as its name implies, must allow multiple users to access the database at

the same time. This is essential if data for multiple applications is to be integrated and maintained in a

single database. The DBMS must include concurrency control software to ensure that several users

trying to update the same data do so in a controlled manner so that the result of the updates is correct.

For example, when several reservation agents try to assign a seat on an airline flight, the DBMS should

ensure that each seat can be accessed by only one agent at a time for assignment to a passenger. These

types of applications are generally called online transaction processing (OLTP) applications. A

V.RASHMI (Assistant Professor) PVPSIT IT 6

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

fundamental role of multiuser DBMS software is to ensure that concurrent transactions operate

correctly and efficiently.

The concept of a transaction has become central to many database applications. A transaction is an

executing program or process that includes one or more database accesses, such as reading or updating

of database records. The DBMS must enforce several transaction properties. The isolation property

ensures that each transaction appears to execute in isolation from other transactions, even though

hundreds of transactions may be executing concurrently. The atomicity property ensures that either all

the database operations in a transaction are executed or none.

Database Users

Users may be divided into

▪ Those who actually use and control the database content, and those who design, develop and

maintain database applications called “Actors on the scene”.

▪ Those who design and develop the DBMS software and related tools, and the computer

systems operators called “Workers behind the scene”.

Actors on the Scene:

1) Database Administrator (DBA): chief administrator, who oversees and manages the

database system (including the data and software). Duties include authorizing users to access

the database, coordinating/monitoring its use, acquiring hardware/software for upgrades, etc.

The DBA is accountable for problems such as security breaches and poor system response

time. In large organizations, the DBA might have a support staff.

2) Database Designers: responsible for identifying the data to be stored and for choosing an

appropriate way to organize it. Database designers typically interact with each potential group

of users and develop views of the database that meet the data and processing requirements of

these groups. The final database design must be capable of supporting the requirements of all

user groups.

3) End Users: These are persons who access the database for querying, updating, and report

generation. There are several categories of end users:

✓ Casual end users: use database occasionally, needing different information each time;

use query language to specify their requests; typically middle- or high-level managers.

✓ Naive/Parametric end users: biggest group of users; frequently query/update the

database using standard canned transactions that have been carefully programmed and

tested in advance.

Examples:

▪ Bank tellers check account balances, post withdrawals/deposits

▪ Reservation clerks for airlines, hotels, etc., check availability of seats/rooms and

make reservations.

▪ Sophisticated end users: Include engineer scientists business analysts and others,

who thoroughly familiarize themselves with the facilities of the DBMS in order to

implement their own applications to meet their complex requirements.

✓ Stand-alone users: maintain personal databases by using ready-made program packages

that provide easy-to-use menu-based or graphics-based interfaces.

Example: user of a tax package that stores a variety of personal financial data for tax

purposes

4) System Analysts and Application Programmers (Software Engineers):
System Analysts: determine needs of end users, especially naive and parametric users,

and develop specifications for canned transactions that meet these needs.

V.RASHMI (Assistant Professor) PVPSIT IT 7

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

Application Programmers: Implement, test, document, and maintain programs that

satisfy the specifications mentioned above.

Workers behind the Scene

1. DBMS system designers and implementers: design and implement the DBMS modules and

interfaces as a software package. A DBMS is a very complex software system that consists of

many components, or modules, including modules for implementing the catalog, query

language processing, interface processing, accessing and buffering data, controlling

concurrency, and handling data recovery and security.

2. Tool developers: design and implement tools that facilitate database modeling and design,

database system design, and improved performance.
3. Operators and maintenance personnel (system administration personnel): responsible for

the actual running and maintenance of the hardware and software environment for the

database system.

Advantages of Using the DBMS Approach:
1) Controlling Redundancy: Data redundancy such as tends to occur in the "file processing"

approach leads to wasted storage space, duplication of effort and a higher likelihood of the

introduction of inconsistency.
In the database approach, the views of different user groups are integrated during database

design. This is known as data normalization, and it ensures consistency and saves storage

space. However, it is sometimes necessary to use controlled redundancy to improve the

performance of queries. For example, we may store Student_name and Course_number

redundantly in a GRADE_REPORT file because whenever we retrieve a GRADE_REPORT

record, we want to retrieve the student name and course number along with the grade, student

number, and section identifier.
A DBMS should provide the capability to automatically enforce the rule that no

inconsistencies are introduced when data is updated.
2) Restricting Unauthorized Access: When multiple users share a large database, it is likely

that most users will not be authorized to access all information in the database. For example,

financial data is often considered confidential and only authorized persons are allowed to

access such data. In addition, some users may only be permitted to retrieve data, whereas

others are allowed to retrieve and update. Hence, the type of access operation retrieval or

update must also be controlled. A DBMS should provide a security and authorization

subsystem, which the DBA uses to create accounts, to specify account restrictions and enforce

these restrictions automatically.
3) Providing Persistent Storage for Program Objects: The values of program variables or

objects are discarded once a program terminates, unless the programmer explicitly stores them

in permanent files, which often involves converting these complex structures into a format

suitable for file storage. Object-oriented database systems make it easier for complex runtime

objects to be saved in secondary storage so as to survive beyond program termination and to

be retrievable at a later time.
Object-oriented database systems are compatible with programming languages such as C++

and Java, and the DBMS software automatically performs any necessary conversions.
4) Providing Storage Structures and Search Techniques for Efficient Query Processing:

DBMS maintains indexes that are utilized to improve the execution time of queries and

updates. DBMS has a buffering or caching module that maintains parts of the database in

main memory buffers. The query processing and optimization module is responsible for

choosing an efficient query execution plan for each query submitted to the system.

5) Providing Backup and Recovery: The backup and recovery subsystem of the DBMS is

responsible for recovery. For example, if the computer system fails in the middle of a

V.RASHMI (Assistant Professor) PVPSIT IT 8

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

complex update transaction, the recovery subsystem is responsible for making sure that the

database is restored to the state it was in before the transaction started executing. Disk backup

is also necessary in case of a catastrophic disk failure.
6) Providing Multiple User Interfaces: Because many types of users with varying levels of

technical knowledge use a database, a DBMS should provide a variety of user interfaces.

These include

Query languages for casual users
Programming language interfaces for application

programmers Forms and command codes for parametric users

Menu-driven interfaces and natural language interfaces for standalone users

7) Representing Complex Relationships among Data: A database may include numerous

varieties of data that are interrelated in many ways.
For example each section record is related to one course record and to a number of

GRADE_REPORT records one for each student who completed that section. A DBMS must

have the capability to represent a variety of complex relationships among the data, to define

new relationships as they arise, and to retrieve and update related data easily and efficiently.
8) Enforcing Integrity Constraints: Most database applications are such that the semantics of

the data require that it satisfy certain restrictions in order to make sense.

The simplest type of integrity constraint involves specifying a data type for each data item.

For example, in student table we specified that the value of Name must be a string of
no more than 30 alphabetic characters.

More complex type of constraint is referential integrity involves specifying that a

record in one file must be related to records in other files. For example, in university database,

we can specify that every section record must be related to a course record.
Another type of constraint specifies uniqueness on data item values, such as every

course record must have a unique value for Course_number. This is known as a key or

uniqueness constraint.
9) Permitting Inferencing and Actions Using Rules: In a deductive database system, one may

specify declarative rules that allow the database to infer new data. For example, figure out

which students are on academic probation. Such capabilities would take the place of

application programs that would be used to ascertain such information otherwise.
Active database systems go one step further by allowing "active rules" that can be used to

initiate actions automatically.

In today’s relational database system it is possible to associate triggers with tables.
10) Additional Implications of Using the Database Approach:

Potential for Enforcing Standards: database approach permits the DBA to define

and enforce standards among database users in a large organization which facilitates

communication and cooperation among various departments, projects, and users

within the organization.Standards can be defined for names and formats of data

elements, display formats, report structures and so on.
Reduced Application Development Time: once a database is up and running,

substantially less time is generally required to create new applications using DBMS

facilities. Development time using a DBMS is estimated to be one-sixth to one-fourth

of that for a traditional file systems.
Flexibility: It may be necessary to change the structure of a database as requirements

change. DBMSs allow changes to the structure of the database without affecting the

stored data and the existing application programs.

Availability of Up-to-Date Information: DBMS makes the database available to all

users. Availability of up-to-date information is essential for many transaction-

processing applications, such as reservation systems or banking databases

V.RASHMI (Assistant Professor) PVPSIT IT 9

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

Economies of Scale: DBMS approach permits consolidation of data and applications,

to overlap between activities of data-processing in different projects or departments.

This enables the whole organization to invest in more powerful processors, storage

devices, or communication gear, rather than having each department purchase its

equipment thus reducing overall costs of operation and management.

A Brief History of Database Applications:

Early Database Applications Using Hierarchical and Network Systems

Early database applications maintained records in large organizations such as

corporations, universities, hospitals, and banks. In many of these applications, there were

large numbers of records of similar structure. There were also many types of records and

many interrelationships among them.

Problems with the early database systems

o Lack of data abstraction and program-data independence capabilities
o Provided only programming language interfaces. This made it time-consuming and

expensive to implement new queries and transactions, since new programs had to be

written, tested, and debugged.

Providing Data Abstraction and Application Flexibility with Relational Databases

Relational databases were originally proposed to separate the physical storage of data

from its conceptual representation and to provide a mathematical foundation for data

representation and querying. The relational data model also introduced high-level query

languages that provided an alternative to programming language interfaces, making it much

faster to write new queries. Hence, data abstraction and program-data independence were

much improved when compared to earlier systems.

Object-Oriented Applications and the Need for More Complex Databases

Object-oriented databases (OODBs) mainly used in specialized applications, such as

engineering design, multimedia publishing, and manufacturing systems. In addition, many

object-oriented concepts were incorporated into the newer versions of relational DBMSs,

leading to object-relational database management systems, known as ORDBMSs.

Interchanging Data on the Web for E-Commerce Using XML

The World Wide Web provides a large network of interconnected computers. Users

can create documents using a Web publishing language, such as HyperText Markup Language

(HTML), and store these documents on Web servers where other users (clients) can access

them. Documents can be linked through hyperlinks, which are pointers to other documents

Currently, eXtended Markup Language (XML) is considered to be the primary

standard for interchanging data among various types of databases and Web pages. XML

combines concepts from the models used in document systems with database modeling

concepts.

Extending Database Capabilities for New Applications

The success of database systems in traditional applications encouraged developers of

other types of applications to attempt to use them. The following are some examples of these

applications:

V.RASHMI (Assistant Professor) PVPSIT IT 10

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

o Scientific applications that store large amounts of data resulting from Scientific
experiments in areas such as high-energy physics, the mapping of the human genome, and

the discovery of protein structures.
o Storage and retrieval of images, including scanned news or personal photographs, satellite

photographic images, and images from medical procedures such as x-rays and MRIs
(magnetic resonance imaging).

o Storage and retrieval of videos, such as movies, and video clips from news or personal

digital cameras.
o Data mining applications that analyze large amounts of data searching for the occurrences

of specific patterns or relationships, and for identifying unusual patterns in areas such as

credit card usage.
o Spatial applications that store spatial locations of data, such as weather information, maps

used in geographical information systems, and in automobile navigational systems.
o Time series applications that store information such as economic data at regular points in

time, such as daily sales and monthly gross national product figures.

Databases versus Information Retrieval

Database technology is heavily used in manufacturing, retail, banking, insurance,

finance, and health care industries, where structured data is collected through forms, such as

invoices or patient registration documents. An area related to database technology is

Information Retrieval (IR), which deals with books, manuscripts, and various forms of library-

based articles. Data is indexed, cataloged, and annotated using keywords. IR is concerned with

searching for material based on these keywords, and with the many problems dealing with

document processing and free-form text processing.

When Not to Use a DBMS:

DBMS may involve unnecessary overhead costs that would not be incurred in traditional file

processing. The overhead costs of using a DBMS are due to the following:

o High initial investment in hardware, software, and training.
o The generality that a DBMS provides for defining and processing data
o Overhead for providing security, concurrency control, recovery, and integrity functions

Therefore, it may be more desirable to use regular files under the following circumstances:

o Simple, well-defined database applications that are not expected to change at all.

o Stringent, real-time requirements for some application programs that may not be met

because of DBMS overhead.

o Embedded systems with limited storage capacity, where a general-purpose DBMS would

not fit.

o No multiple-user access to data.

Overview of Database Languages and Architectures:

Introduction

The architecture of DBMS packages has evolved from the early monolithic systems, where the

whole DBMS software package was one tightly integrated system. Modern DBMS packages are

modular in design, with a client/server system architecture. In a basic client/server DBMS architecture,

the system functionality is distributed between two types of module. A client module is designed to run

on a user workstation or personal computer. The client module handles user interaction and provides

the user-friendly interfaces such as forms- or menu-based GUIs. The other kind of module, called a

server module handles data storage, access, search, and other functions

V.RASHMI (Assistant Professor) PVPSIT IT 11

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

Data Models, Schemas and Instances:
Data Model

A data model is a collection of concepts that can be used to describe the structure of a

database. By structure of a database we mean the data types, relationships and constraints that apply to

the data. Most data models also include a set of basic operations for specifying retrievals and updates

on the database. Data model provides the necessary means to achieve abstraction.

Categories of Data Models

Data models can be categorized according to the types of concepts they use to describe the

database structure.

1) High-level or conceptual data models: provide concepts that are close to the way many users

perceive data. Conceptual data models use concepts such as entities, attributes, and

relationships.
2) Representational or implementation data models: provide concepts that may be easily

understood by end users but that are not too far removed from the way data is organized in

computer storage. Representational data models hide many details of data storage on disk but
can be implemented on a computer system directly. Representational or implementation data
models are the models used most frequently in traditional commercial DBMSs. These include

the widely used relational data model, as well as the so-called legacy data models the network

and hierarchical models. Representational data models represent data by using record

structures and hence are sometimes called record-based data models.
3) Low-level or physical data models: provide concepts that describe the details of how data is

stored on the computer storage media, typically magnetic disks. Physical data models describe

how data is stored as files in the computer by representing information such as record formats,

record orderings, and access paths.

Database schema

The description of a database is called the database schema, which is specified during

database design and is not expected to change frequently.

Schema diagram

A displayed schema is called a schema diagram. A schema diagram displays only some

aspects of a schema, such as the names of record types and data items, and some types of

constraints.

Figure: Schema diagram for the database

V.RASHMI (Assistant Professor) PVPSIT IT 12

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

Schema construct

Each object in the schema is called schema construct. For example student or course.

Database state or snapshot

The data in the database at a particular moment in time is called a database state or snapshot.

It is also called the current set of occurrences or instances in the database. In a given database state,

each schema construct has its own current set of instances; for example, the STUDENT construct will

contain the set of individual student entities (records) as its instances.

The distinction between database schema and database state is very important. When we

define a new database, we specify its database schema only to the DBMS. At this point, the

corresponding database state is the empty state with no data. We get the initial state of the database

when the database is first populated or loaded with the initial data. From then on, every time an update

operation is applied to the database, we get another database state. At any point in time, the database

has a current state.

The DBMS is partly responsible for ensuring that every state of the database is a valid state

that is, a state that satisfies the structure and constraints specified in the schema. The

DBMS stores the descriptions of the schema constructs and constraints also called the meta-

data in the DBMS catalog so that DBMS software can refer to the schema whenever it needs to. The

schema is sometimes called the intension, and a database state is called an extension of the schema.

Three-Schema Architecture and Data Independence:
The Three-Schema Architecture

The goal of the three-schema architecture is to separate the user applications from the physical

database. In this architecture, schemas can be defined at the following three levels:

1) The internal level has an internal schema, which describes the physical storage structure of

the database. The internal schema uses a physical data model and describes the complete

details of data storage and access paths for the database.
2) The conceptual level has a conceptual schema, which describes the structure of the whole

database for a community of users. The conceptual schema hides the details of physical

storage structures and concentrates on describing entities, data types, relationships, user

operations, and constraints. Usually, a representational data model is used to describe the

conceptual schema when a database system is implemented.
3) The external or view level includes a number of external schemas or user views. Each

external schema describes the part of the database that a particular user group is interested in

and hides the rest of the database from that user group. Each external schema is typically

implemented using a representational data model, possibly based on an external schema

design in a high-level data model.

V.RASHMI (Assistant Professor) PVPSIT IT 13

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

Figure 2.2: The three-schema architecture

In a DBMS based on the three-schema architecture, each user group refers to its own external

schema. Hence, the DBMS must transform a request specified on an external schema into a request

against the conceptual schema, and then into a request on the internal schema for processing over the

stored database. If the request is a database retrieval, the data extracted from the stored database must

be reformatted to match the user’s external view.

The processes of transforming requests and results between levels are called mappings.

Data Independence

Data independence can be defined as the capacity to change the schema at one level of a database

system without having to change the schema at the next higher level. We can define two types of data

independence:

1) Logical data independence is the capacity to change the conceptual schema without having

to change external schemas or application programs. We may change the conceptual schema

to expand the database, to change constraints, or to reduce the database. Only the view

definition and the mappings need to be changed in a DBMS that supports logical data

independence.
2) Physical data independence is the capacity to change the internal schema without having to

change the conceptual schema. Hence, the external schemas need not be changed as well.

Changes to the internal schema may be needed because some physical files were reorganized

for example, by creating additional access structures to improve the performance of retrieval

or update.

Data independence occurs because when the schema is changed at some level, the schema at the next

higher level remains unchanged; only the mapping between the two levels is changed.

V.RASHMI (Assistant Professor) PVPSIT IT 14

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

Database Languages and Interfaces:

The DBMS must provide appropriate languages and interfaces for each category of

users. DBMS Languages

Once the design of a database is completed and a DBMS is chosen to implement the database, the first

step is to specify conceptual and internal schemas for the database and any mappings between the two.

Data Definition Language (DDL)

The data definition language (DDL) is used by the DBA and by database designers to define both

schemas when no strict separation of levels is maintained . The DBMS will have a DDL compiler

whose function is to process DDL statements in order to identify descriptions of the schema constructs

and to store the schema description in the DBMS catalog.

Storage Definition Language (SDL)

Storage definition language is used when clear separation is maintained between the conceptual and

internal levels, the DDL is used to specify the conceptual schema only.

The storage definition language (SDL), is used to specify the internal schema. The mappings between

the two schemas may be specified in either one of these languages.

View Definition Language (VDL),

View definition language is used to specify user views and their mappings to the conceptual schema.

In relational DBMSs, SQL is used in the role of VDL to define user or application views as results of

predefined queries.

Data Manipulation Language (DML)

Data manipulation languages (DML) are used to perform manipulation operation such as retrieval,

insertion, deletion, and modification of the data.

There are two main types of DMLs.:

1) High-level or nonprocedural DML: can be used on its own to specify complex database

operations concisely. Many DBMSs allow high-level DML statements either to be entered

interactively from a display monitor or terminal or to be embedded in a general-purpose

programming language. In the latter case, DML statements must be identified within the

program so that they can be extracted by a precompiler and processed by the DBMS. High-

level DMLs, such as SQL, can specify and retrieve many records in a single DML statement;

therefore, they are called set-at-a-time or set-oriented DMLs. A query in a high-level DML

often specifies which data to retrieve rather than how to retrieve it; therefore, such languages

are also called declarative

2) Low-level or procedural DML: must be embedded in a general-purpose programming

language. This type of DML typically retrieves individual records or objects from the database

and processes each separately. Language constructs, such as looping, to retrieve and process

each record from a set of records. Low-level DMLs are also called record-at-a-time DMLs

because of this property. DL/1, a DML designed for the hierarchical model, is a low-level

DML that uses commands such as GET UNIQUE, GET NEXT, or GET NEXT WITHIN

PARENT to navigate from record to record within a hierarchy of records in the database.

V.RASHMI (Assistant Professor) PVPSIT IT 15

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

Host language

Whenever DML commands, whether high level or low level, are embedded in a general-purpose

programming language, that language is called the host language and the DML is called the data

sublanguage.

A high-level DML used in a standalone interactive manner is called a query language

DBMS Interfaces

User-friendly interfaces provided by a DBMS may include the following:

1) Menu-Based Interfaces for Web Clients or Browsing: These interfaces present the user

with lists of options (called menus) that lead the user through the formulation of a request.

There is no need for the user to memorize the specific commands and syntax of a query

language. Pull-down menus are a very popular technique in Web-based user interfaces.
2) Forms-Based Interfaces: A forms-based interface displays a form to each user. Users can fill

out all of the form entries to insert new data, or they can fill out only certain entries, in which

case the DBMS will retrieve matching data for the remaining entries. Forms are usually

designed and programmed for naive users as interfaces to canned transactions.
3) Graphical User Interfaces: A GUI typically displays a schema to the user in diagrammatic

form. The user then can specify a query by manipulating the diagram. In many cases, GUIs

utilize both menus and forms. Most GUIs use a pointing device, such as a mouse, to select

certain parts of the displayed schema diagram.
4) Natural Language Interfaces: These interfaces accept requests written in English or some

other language and attempt to understand them. A natural language interface usually has its

own schema, which is similar to the database conceptual schema, as well as a dictionary of

important words. The natural language interface refers to the words in its schema, as well as to

the set of standard words in its dictionary, to interpret the request. If the interpretation is

successful, the interface generates a high-level query corresponding to the natural language

request and submits it to the DBMS for processing; otherwise, a dialogue is started with the

user to clarify the request.
5) Speech Input and Output: Applications with limited vocabularies such as inquiries for

telephone directory, flight arrival/departure, and credit card account information are allowing

speech for input and output to enable customers to access this information. The speech input

is detected using a library of predefined words and used to set up the parameters that are

supplied to the queries. For output, a similar conversion from text or numbers into speech

takes place.
6) Interfaces for Parametric Users: Parametric users, such as bank tellers, often have a small

set of operations that they must perform repeatedly. For example, a teller is able to use single

function keys to invoke routine and repetitive transactions such as account deposits or

withdrawals, or balance inquiries. Usually a small set of abbreviated commands is included,

with the goal of minimizing the number of keystrokes required for each request.
7) Interfaces for the DBA: Most database systems contain privileged commands that can be

used only by the DBA staff. These include commands for creating accounts, setting system

parameters, granting account authorization, changing a schema, and reorganizing the storage

structures of a database.

V.RASHMI (Assistant Professor) PVPSIT IT 16

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

Database System Environment:

DBMS Component Modules

The top part of the figure refers to the various users of the database environment and

their interfaces. The lower part shows the internals of the DBMS responsible for

storage of data and processing of transactions.
DDL compiler-processes schema definitions, specified in the DDL, and stores

descriptions of the schemas (meta-data) in the DBMS catalog.
Interactive query interface: interface for Casual users and persons with occasional

need for information from the database.

Query compiler- validates for correctness of the query syntax, the names of files and

data elements & compiles them into an internal form.

Query optimizer concerned with the rearrangement and possible reordering of

operations, elimination of redundancies, and use of correct algorithms and indexes

during execution. It consults the system catalog for statistical and other physical

information about the stored data and generates executable code that performs the

necessary operations for the query and makes calls on the runtime processor.
Precompiler - extracts DML commands from an application program and sends to the

DML compiler for compilation into object code for database access.
Host language compiler - rest of the program is sent to the host language compiler.

The object codes for the DML commands and the rest of the program are linked,

forming a canned transaction whose executable code includes calls to the runtime database

processor.
Runtime database processor executes:

1) The privileged commands
2) The executable query plans, and

V.RASHMI (Assistant Professor) PVPSIT IT 17

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

3) The canned transactions with runtime parameters.
It works with the system catalog and may update it withstatistics. It also works with

the stored data manager, which in turn uses basic operating system services for

carrying out low-level input/output (read/write) operations between the disk and main

memory. The runtime database processor handles other aspects of data transfer, such

as management of buffers in the main memory.

Stored data manager uses basic operating system services for carrying out low-level

input/output (read/write) operations between the disk and main memory.

Concurrency control and backup and recovery systems integrated into the working of

the runtime database processor for purposes of transaction management.

Database System Utilities

Database utilities help the DBA to manage the database system.

Common utilities have the following types of functions:

Loading: used to load existing data files such as text files or sequential files into the

database.

Backup: creates a backup copy of the database, usually by dumping the entire

database onto tape or other mass storage medium. The backup copy can be used to

restore the database in case of catastrophic disk failure. Incremental backups are also

often used, where only changes since the previous backup are recorded. Incremental

backup is more complex, but saves storage space.
Database storage reorganization: used to reorganize a set of database files into

different file organizations, and create new access paths to improve performance.

Performance monitoring: monitors database usage and provides statistics to the

DBA. The DBA uses the statistics in making decisions such as whether or not to

reorganize files or whether to add or drop indexes to improve performance.

Other utilities may be available for sorting files, handling data compression, monitoring

access by users, interfacing with the network, and performing other functions.

Tools, Application Environments, and Communications Facilities

➢ Tools

CASE : used in the design phase of database systems

Data dictionary: In addition to storing catalog information about schemas and

constraints, the data dictionary stores other information, such as design decisions,

usage standards, application program descriptions, and user information. Such a

system is also called an information repository. This information can be accessed

directly by users or the DBA when needed.

➢ Application Development Environments

PowerBuilder (Sybase) or JBuilder (Borland): provide an environment for

developing database applications including database design, GUI evelopment,

querying and updating, and application program development.

Communications software: allow users at locations remote from the database

system site to access the database through computer terminals, workstations, or

V.RASHMI (Assistant Professor) PVPSIT IT 18

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

personal computers. Integrated DBMS and data communications system is called a

DB/DC system.

Centralized and Client-Server Architecture for DBMSs:

➢ Centralized DBMSs Architecture

All DBMS functionality, application program execution, and user interface processing

carried out on one machine.

Figure: A physical centralized architecture

❖ Disadvantages:

When the central site computer or database system goes down, then everyone

is blocked from using the system.

Communication costs from the terminals to the central site can expensive.
➢ Basic Client/Server Architectures

The client/server architecture was developed to deal with computing environments in

which a large number of PCs, workstations, file servers, printers, database servers,

Web servers, e-mail servers, and other software and equipment are connected via a

network.

Define specialized servers with specific functionalities.

For example file server that maintains the files of the client machines.

The resources provided by specialized servers can be accessed by many client

machines.

The client machines provide the user with the appropriate interfaces to utilize

these servers and local processing power to run local applications

V.RASHMI (Assistant Professor) PVPSIT IT 19

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

Figure: Logical two-tier client/server architecture

Figure: Physical two-tier client/server architecture

The concept of client/server architecture assumes an underlying framework that

consists of many PCs and workstations as well as a smaller number of mainframe

machines, connected via LANs and other types of computer networks.
A client is a user machine that provides user interface capabilities and local

processing.

When a client requires access to additional functionality such as database access that

does not exist at that machine, it connects to a server that provides the needed

functionality.
A server is a system containing both hardware and software that can provide services

to the client machines, such as file access, printing, archiving, or database access.

The software components are distributed over two systems: client and server

✓ Server handles

- Query and transaction functionality related to SQL

✓ Processing Client handles

- User interface programs and application programs

V.RASHMI (Assistant Professor) PVPSIT IT 20

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

The user interface programs and application programs can run on the client side.

When DBMS access is required, the program establishes a connection to the DBMS (which is

on the server side) once the connection is created, the client program can communicate with

the DBMS.

A client program can actually connect to several RDBMSs and send query and

transaction requests using the ODBC API, which are then processed at the server sites. Any

query results are sent back to the client program, which can process and display the results as

needed. A related standard for the Java programming language, called JDBC, has also been

defined to allow Java client programs to access one or more DBMSs through a standard

interface.

Object-oriented DBMSs

The different approach to two-tier client/server architecture was taken by some object-

oriented DBMSs, where the software modules of the DBMS were divided between client and

server in a more integrated way.

Server level: May include the part of the DBMS software responsible for handling

data storage on disk pages, local concurrency control and recovery, buffering and

caching of disk pages.
Client level: May handle the user interface, data dictionary functions, DBMS

interactions with programming language compilers, global query optimization,

concurrency control, and recovery across multiple servers, structuring of complex

objects from the data in the buffers.

In this approach, the client/server interaction is more tightly coupled and is done

internally by the DBMS modules some of which reside on the client and some on the server

rather than by the users/programmers.

Three-Tier and n-Tier Architectures for Web Applications:

Many Web applications use an architecture called the three-tier architecture, which adds an

intermediate layer between the client and the database server.

Figure: Logical three-tier client/server architecture

V.RASHMI (Assistant Professor) PVPSIT IT 21

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

Client

- Contain GUI interfaces and some additional application-specific business rules.
Application Server or the Web Server

- Accepts requests from the client, processes the request and sends database queries

and commands to the database server, and then passes processed data from the

database server to the clients, where it may be processed further and filtered to be

presented to users in GUI format.
- It can also improve database security by checking client’s credentials before

forwarding a request from the database server.

The figure shows another architecture used by database and other application package

vendors.

Presentation Layer: Displays information to the user and allows data entry.

The business Logic Layer:

- Handles intermediate rules and constraints before data is passed up to the user or

down to the DBMS.
- Can also act as a Web server, which retrieves query results from the database server

and formats them into dynamic Web pages that are viewed by the Web browser at the

client side
The bottom Layer: Includes all the data management services.

➢ N-tier Architecture:

It is possible to divide the layers between the user and the stored data further into finer

components, thereby giving rise to n-tier architectures; where n may be four or five

tiers. The business logic layer is divided into multiple layers.

Advantage:

- Any one tier can run on an appropriate processor or operating system platform and can

be handled independently.

Vendors of ERP (enterprise resource planning) and CRM (customer

relationship management) packages often use a middleware layer, which accounts for

V.RASHMI (Assistant Professor) PVPSIT IT 22

DATABASE MANAGEMENT SYSTEMS PVP20 UNIT-1

the front-end modules (clients) communicating with a number of back-end databases

(servers).

V.RASHMI (Assistant Professor) PVPSIT IT 23

